====== Passive components at cryogenic temperatures ====== ===== Resistor ===== Metal Thin Film resistors are very temperature stable. \cite{Homulle:2019} ^ Susumu, RR1220P-104-D | 100kOhm | \cite{Cahall.Gauthier.ea:2018}, \cite{Lamb:2014} | ^ Susumu, RR1220P-101-D | 100 Ohm | \cite{Cahall.Gauthier.ea:2018}, \cite{Lamb:2014} | ^ Vishay, FC0603E50R0BST1 | 50 Ohm | \cite{Homulle:2019} | ^ Panasonic ERA-3AEB4990V | 499 Ohm | \cite{Homulle:2019} | Literature: * Table of characterized components: \cite{Lamb:2014} ===== Inductor ===== ^ Epcos, B82496C3221J000 | 220nH | \cite{Cahall.Gauthier.ea:2018} | ^ Taiyo Yuden chip inductor (0402) | 2.28uH (1.37uH, 1 Ohm @ 4K) | \cite{Buchanan.Benford.ea:2012} | ===== Capacitor ===== Foil capacitors (e.g. ECPU, ECHU and PPS) reduced their capacitance significantly at cryogenic temperatures. NP0 capacitors show little change of capacitance during cooling. \cite{Pan:2005} Below 1uF NP0/C0G and Acrylic Film are the way to go, above tantalum polymer capactitors.\cite{Homulle:2019} ^ Kemet, C0805C473J3GACTU | 0.047uF, Ceramic capacitor, used as decoupling capacitor, cold they have $\approx 11pF$ | \cite{PaqueletWuetz.Bavdaz.ea:2020} | ^ Kemet, C0603C153J3GACTU | 0.015µF, Ceramic capacitor, used as decoupling capacitor, cold they have $\approx 2pF$ | \cite{PaqueletWuetz.Bavdaz.ea:2020} | ^ Kemet, C0402C101J5GACTU | 100pF, Ceramic capacitor | \cite{PaqueletWuetz.Bavdaz.ea:2020} | ^ Vishay Vitramon, VJ0603A101KXBAC31 | 100pF | \cite{Cahall.Gauthier.ea:2018} | Literature: * Table of characterized components: \cite[Table 2.1]{Homulle:2019} Table 2.1