Table of Contents

Passive components at cryogenic temperatures

Resistor

Metal Thin Film resistors are very temperature stable. \cite{Homulle:2019}

Susumu, RR1220P-104-D 100kOhm \cite{Cahall.Gauthier.ea:2018}, \cite{Lamb:2014}
Susumu, RR1220P-101-D 100 Ohm \cite{Cahall.Gauthier.ea:2018}, \cite{Lamb:2014}
Vishay, FC0603E50R0BST1 50 Ohm \cite{Homulle:2019}
Panasonic ERA-3AEB4990V 499 Ohm \cite{Homulle:2019}

Literature:

Inductor

Epcos, B82496C3221J000 220nH \cite{Cahall.Gauthier.ea:2018}
Taiyo Yuden chip inductor (0402) 2.28uH (1.37uH, 1 Ohm @ 4K) \cite{Buchanan.Benford.ea:2012}

Capacitor

Foil capacitors (e.g. ECPU, ECHU and PPS) reduced their capacitance significantly at cryogenic temperatures. NP0 capacitors show little change of capacitance during cooling. \cite{Pan:2005}

Below 1uF NP0/C0G and Acrylic Film are the way to go, above tantalum polymer capactitors.\cite{Homulle:2019}

Kemet, C0805C473J3GACTU 0.047uF, Ceramic capacitor, used as decoupling capacitor, cold they have $\approx 11pF$ \cite{PaqueletWuetz.Bavdaz.ea:2020}
Kemet, C0603C153J3GACTU 0.015µF, Ceramic capacitor, used as decoupling capacitor, cold they have $\approx 2pF$ \cite{PaqueletWuetz.Bavdaz.ea:2020}
Kemet, C0402C101J5GACTU 100pF, Ceramic capacitor \cite{PaqueletWuetz.Bavdaz.ea:2020}
Vishay Vitramon, VJ0603A101KXBAC31 100pF \cite{Cahall.Gauthier.ea:2018}

Literature: