User Tools

Site Tools


topic:optics:characterization:retardance

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
topic:optics:characterization:retardance [2020/09/03 16:14] – created samueltopic:optics:characterization:retardance [2020/09/03 16:31] (current) – [Mueller Matrix method] Some index errors. samuel
Line 12: Line 12:
  
 ==== Mueller Matrix method ==== ==== Mueller Matrix method ====
 +This is based on \cite{Hui.OSullivan:2009}. As a reminder, the Mueller matrix, applied to a normalized stokes vector $[s_{1,in}, s_{2,in}, s_{3,in}]$ looks like 
 $$ \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}  = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} s_{1,in} \\ s_{2,in} \\ s_{3,in} \end{bmatrix} $$ $$ \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}  = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} s_{1,in} \\ s_{2,in} \\ s_{3,in} \end{bmatrix} $$
 +
 +If $\mathbf{s}_i$ is the basis vectors with a 1 on position $i$, all three output stokes vectors, will form the Mueller matrix.
 +
 +Also two independent input polarization states (no need to be orthogonal) allow determining the Mueller matrix as follows.
 +Measure $\mathbf{s}_a$ and $\mathbf{s}_b$ for two independent input polarizations. $\mathbf{s_1} = \mathbf{s_a}$ and then we can find a orthogonal vector to $\mathbf{s_1}$ and $\mathbf{s_b}$ through the cross-product. $$ \mathbf{s_3} = \mathbf{s_1} \times \mathbf{s_b} $$
 +The third vector can then be found by using the orthogonality through $$\mathbf{s_2} = \mathbf{s_3} \times \mathbf{s_1} $$.
 +
 +
  
topic/optics/characterization/retardance.1599149674.txt.gz · Last modified: by samuel